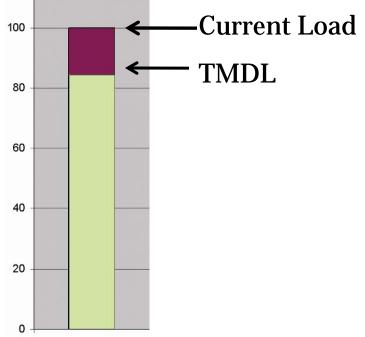
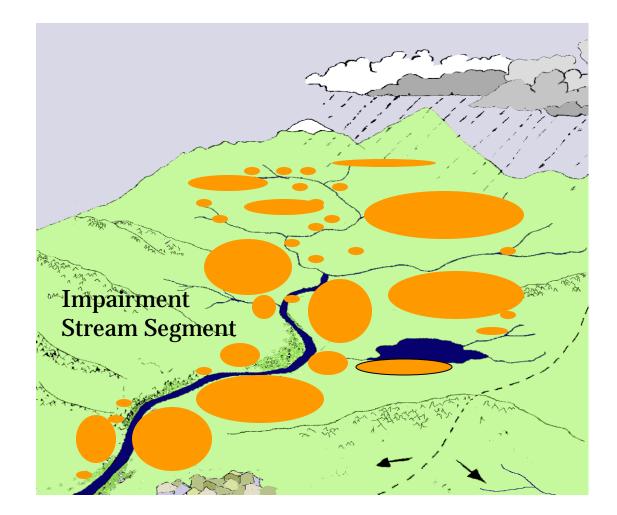

Lower Gallatin Sediment, Nutrient, and Pathogen TMDLs

Christian Schmidt, DEQ Lisa Kusnierz, EPA

September 27, 2012


Public Comment Period

- Start: September 7th, 2012
- End: October 6th, 2012
- Final document is available at...
 - <u>http://deq.mt.gov/pubcom.mcpx</u>
 - State library in Helena
 - Belgrade, Bozeman and Manhattan public libraries
- Submit comments by end of period to;
 - <u>http://comment.cwaic.mt.gov</u>
 - ATTN: Christian Schmidt MDEQ PO BOX 200901 Helena MT 59620-0901


What is a TMDL?

- Total Maximum Daily Load is the amount (loading rate) of a <u>pollutant</u> that a water body can receive from <u>all</u> sources and still meet water quality standards.
- It may be expressed as a load per unit time (e.g. lbs/day) or

as a percent load reduction (e.g., 36% reduction)

A Watershed Approach

Pollutant
 Source Area
 (Human
 Related)

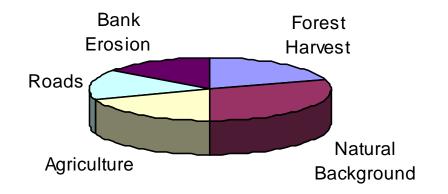
Why are TMDLs Developed?

- Montana state law & the federal Clean Water Act (CWA) require Montana to assess the quality of its waters and whether they are supporting their designated beneficial uses
 - Agriculture, drinking water, recreation, aquatic life
- TMDLs must be developed for waterbodies with pollutant causes of impairment
 - One stream segment may have multiple TMDLs for different pollutants

Major Pollutant Impairment Cause Groups in the Lower Gallatin

- Sediment (sediment)
- Nutrients (total phosphorus, total nitrogen)
- Pathogens (e-coli)
- Other groups include metals, temperature and salinity – no listings in Lower Gallatin

Document Layout

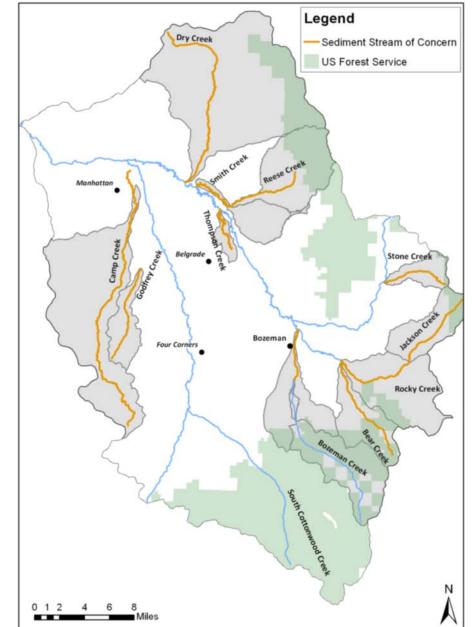

- Watershed Description
- Water Quality Standards Overview
- TMDL Process Overview
- Separate Sections for Sediment, Nutrients, and E. coli
- Implementation Strategy
- Monitoring Strategy

TMDL Development Steps

- Identify Water Quality Targets
- Define Magnitude and Extent of Pollutant Impacts
- Source Assessment
- Establish the TMDL & Associated Allocations

What makes up a TMDL or the Allowable Load?

- TMDL = Load Allocation (LA) + Waste Load Allocation (WLA) + Margin of Safety
- Allocations Usually Based on Existing Loading and Opportunity for Reductions Via BMPs



How is a TMDL implemented?

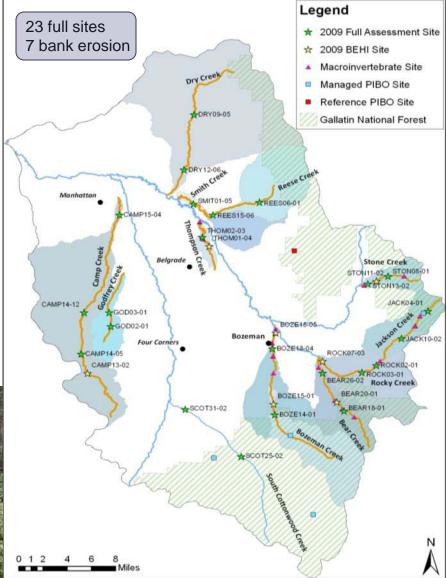
- It is non-regulatory for non-point sources of pollutants...implementation of BMPs or other control measures on a <u>VOLUNTARY</u> basis to restore beneficial uses
 - Existing regulations related to 310 permits and streamside management zones still apply
- For permitted point sources, the waste load allocation (WLA) is regulatory and is enforced by the MPDES permitting process

11 Sediment TMDLs

- Bear Creek
- Bozeman Creek (Sourdough)
- Camp Creek
- Dry Creek
- Godfrey Creek
- Jackson Creek
- Reese Creek
- Rocky Creek
- Smith Creek
- Stone Creek
- Thompson Creek

Sediment - Water Quality Targets

- State water quality standards for sediment are 'narrative'
 - No increases are allowed above naturally occurring concentrations....which are likely to create a nuisance or render the waters harmful...
- To help translate the narrative standard, a suite of sediment related parameters are used
- Targets help define the level of harm and serve as restoration goals
- Target values based on reference, literature, and DEQ data


Sediment - Target Parameters

- Channel form
- Percent fine sediment
- Residual pool depth
- Frequency of pools and large woody debris
- Macroinvertebrate index

Data Sources

Courtesy of USFS

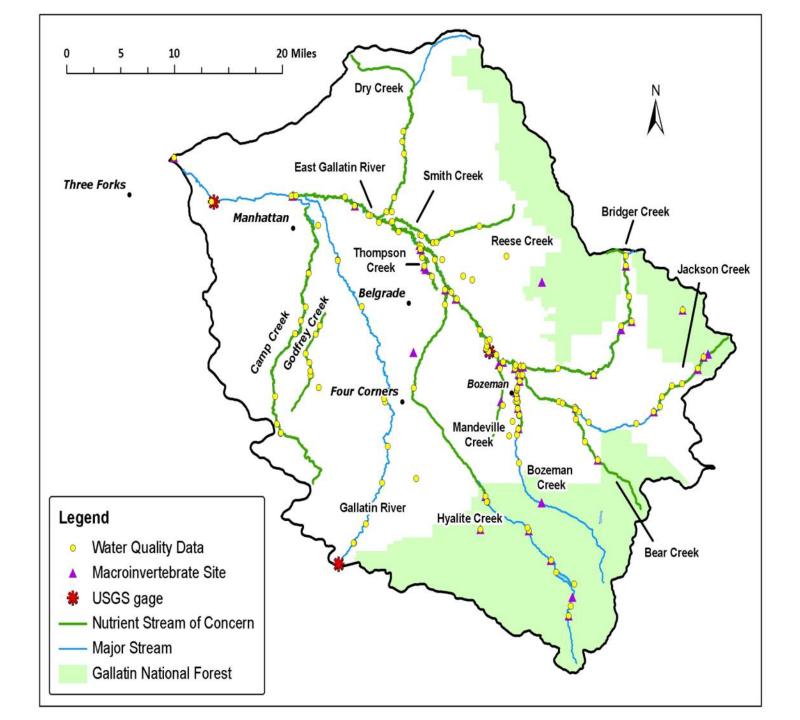
- Assessment data and notes from DEQ assessment files
- 2009 Sediment/Habitat Assessments
- USFS reference and non-reference data, and grazing allotment planning documents
- 2003 and 2011 Bear Creek data (USFS)
- 2002 Bozeman Creek watershed assessment (Bozeman Watershed Council)
- GGWC data (pebble count and macroinvertebrates)
- 2009 nutrient and E. coli source assessment

Source Assessments

- Streambank Erosion
- Unpaved Roads
- Upland Erosion
- Point Sources
 - Construction and Industrial Stormwater
 - Bozeman Stormwater (MS4)

Meeting Allocations

- <u>Streambank Erosion</u>: improving the health of the riparian vegetation
- <u>Roads</u>: reducing the contributing length
- <u>Upland Erosion</u>: improving the upland and riparian vegetative cover
- Point Sources: following permit conditions
- Implementation section & MT's Nonpoint Source Management Plan has BMP practices


TMDL Example - Camp Creek

Sediment Sources	Current Estimated Load (Tons/Year)	Total Allowable Load (Tons/Year)	Load Allocations (% reduction)
Roads	23	19	17%
Streambank Erosion	3,119	1,281	59%
Upland Sediment Sources	5,309	1,832	65%
Total Sediment Load	8,451	3,132	63%

Nutrient - Water Quality Targets

Growing Season: July 1 – Sept 30

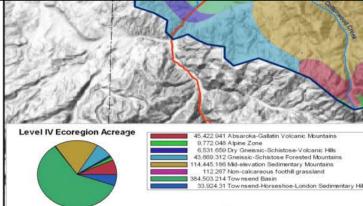
Nutrient targets in the Lower Gallatin project area by ecoregion				
Parameter	Target values			
	Middle Rockies	Absaroka-Gallatin		
	(Level III)	Volcanics Ecoregion		
		(Level IV, within Middle Rockies)		
Nitrate+Nitrite (NO ₃ +NO ₂)	≤ 0.100 mg/L	≤ 0.100 mg/L		
Total Nitrogen (TN)	≤ 0.300 mg/L	≤ 0.250 mg/L		
Total Phosphorous (TP)	≤ 0.030 mg/L	≤ 0.105 mg/L		
Chlorophyll-a	\leq 120 mg/m ² (\leq 35 g AFDW/m ²)	\leq 120 mg/m ² (\leq 35 g AFDW/m ²)		
AFDW = ash-free dry weight				

- Evaluated available data relative to targets using DEQ draft assessment method
- Allowable 20% exceedance rate
- TMDL decision based on outcome of data review

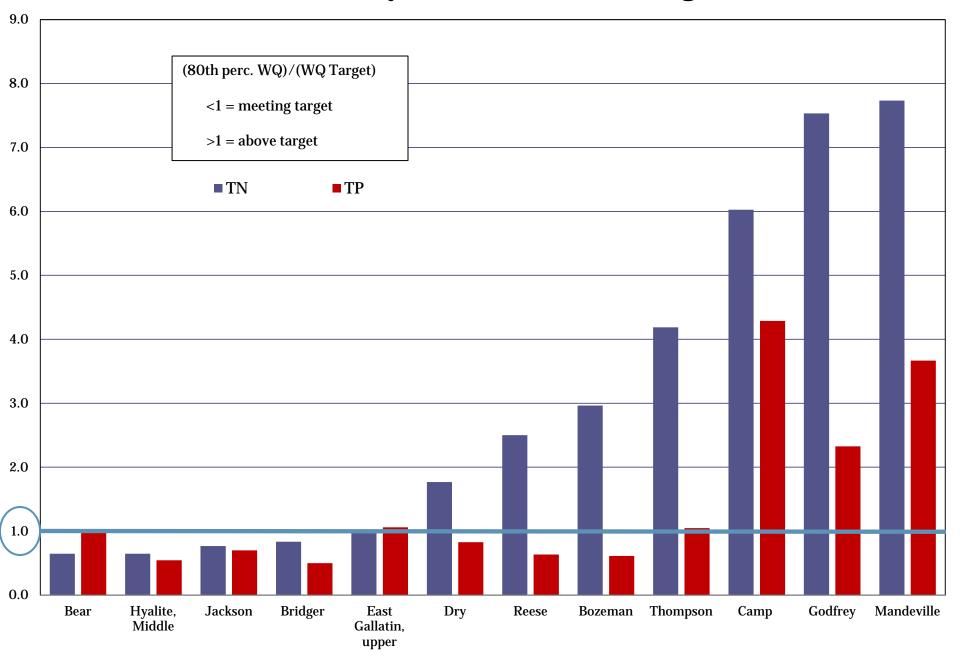
Nutrient Water Quality Targets Influence of Absaroka-Gallatin-Volcanics

*Manhattan

LEVEL IV ECOREGIONS

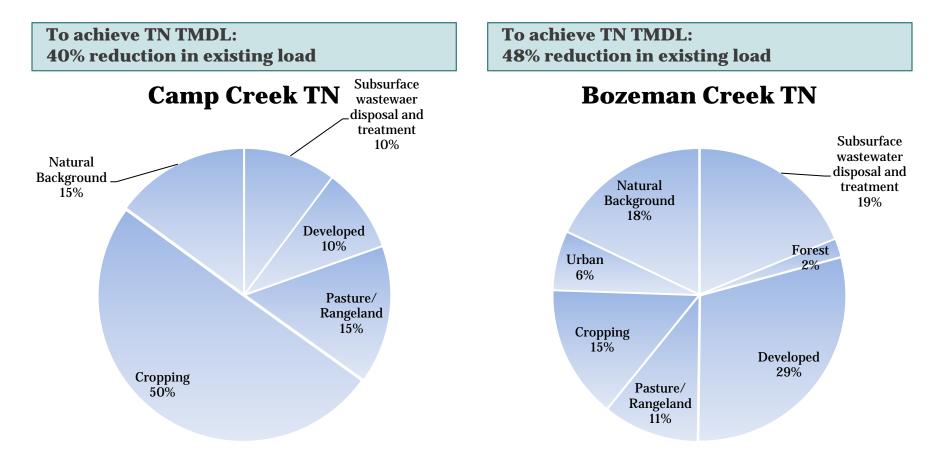

Alpine Zone

Absaroka-Gallatin Volcanic Mountains



Nutrient Targets in the Lower Gallatin project area per stream segment receiving flow from the Absaroka-**Gallatin-Volcanics Level IV ecoregion**

Stream segment	TN target (mg/L)	TP target (mg/L)
Bozeman Creek	≤0.270	≤0.080
East Gallatin between Bozeman and Bridger Creeks	≤0.290	≤0.050
East Gallatin between Bridger and Hyalite Creeks	≤0.300	≤0.030
Lower Hyalite Creek	≤0.260	≤0.090
East Gallatin between Hyalite Creek and Gallatin River	≤0.290	≤0.060

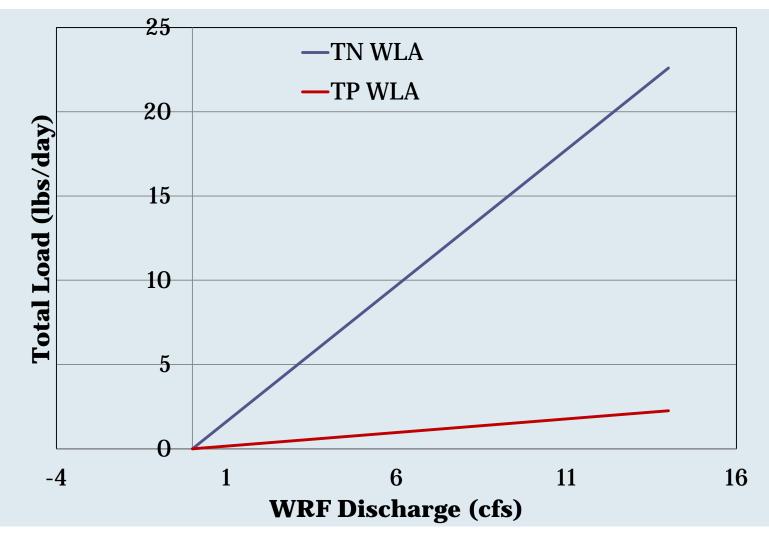

Water Quality Data and Numeric Targets

TMDLs - nutrients

- Source allocations
 - Based on synoptic sampling
 - Land-use characterizations
 - Septic modeling
- TMDL example
- Camp Creek vs. Bozeman Creek
 - Agriculture vs. mixture of urban/developed/agriculture

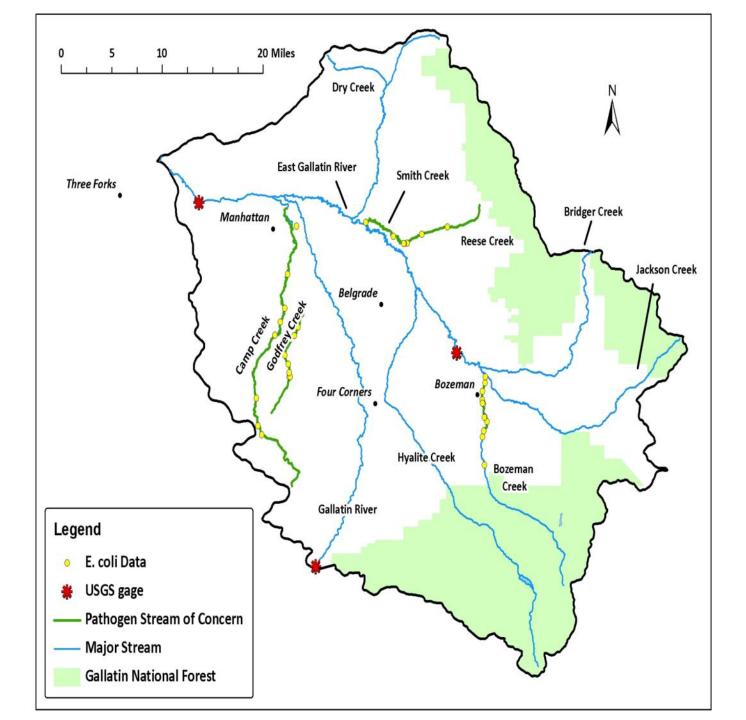
TN TMDL examples

TN TMDL examples

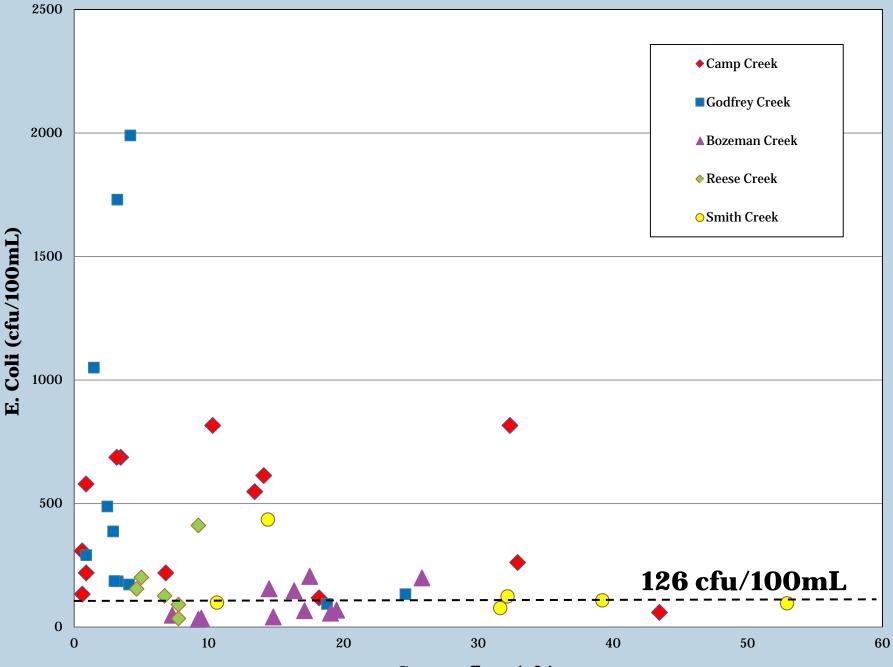

TN Allocations and TMDL for Camp Creek				
Source	Existing Load (lbs/day)*	LA (Ibs/day)	TMDL (lbs/day)	% Reduction
Natural Background	15.26	15.26		0.0%
Forest	0.00	0.00		0.0%
Agriculture	66.12	29.53		55.3%
Residential/Developed	10.17	4.54		55.3%
Subsurface Wastewater Treatment and Disposal	10.17	10.17		0.0%
Total	101.73		60.57	40.0%
* Based on a flow of 17.3 cfs				

TN Allocations and TMDL for Bozeman Creek.				
Source	Existing Load (lbs/day)*	LA (Ibs/day)	TMDL (lbs/day)	% Reduction
Natural Background	12.81	12.81		0.0%
Forest	2.29	2.29		0.0%
Agriculture	30.65	9.60		68.7%
Residential/Developed	45.64	14.29		68.7%
Subsurface Wastewater Treatment and Disposal	22.99	20.69		10.0%
Total	114.38		59.66	48.0%
* Based on a flow of 41.1 cfs	·			

TMDLs - nutrients


- Waste Load Allocations (WLAs)
 - Bozeman Fish Tech Center
 - MS4 (Stormwater)
 - SWMM model; DMR data
 - Performance based
 - Permit StormWater Management Program (SWMP)

TMDLs – nutrients



City of Bozeman Water Reclamation Facility

- No new plant in 2017 variance process/phased implementation
- Limits of technology to determine permit limits
- WLA based on ecoregion water quality target
 If model/sampling determine a different water quality target and accepted by DEQ, the WLA would change to reflect the new target.

Montana Water Quality Criteria for E.coli for B-1 Waterbodies				
Applicable Period	Standard	Geometric mean of 5 samples collected over a 30-day time period	No more than 10% of the samples shall exceed:	
Apr 1 – Oct 31 ("summer")	The geometric mean number of <i>E.coli</i> may not exceed 126 colony forming units per 100 milliliters and 10% of the total samples may not exceed 252 colony forming units per 100 milliliters during any 30-day period (ARM 17.30.623 (2)(i)).	<126 cfu/100mL	252 cfu/100mL	
Nov 1 – Mar 31 ("winter")	The geometric mean number of <i>E.coli</i> may not exceed 630 colony forming units per 100 milliliters and 10% of the samples may not exceed 1,260 colony forming units per 100 milliliters during any 30-day period (ARM 17.30.623 (2)(ii)).	<630 cfu/100mL	1,260 cfu/100mL	

Streamflow (cfs)

E. coli TMDL examples

E. Coli Allocations and TMDL for Camp Creek				
Source	Existing Load (cfu/day)	TMDL (cfu/day)	% Reduction	
Natural Background	27998.00	27998.00	0.0%	
Agriculture/Residential	179107.42	45496.76	74.6%	
Summary	207105.42	73494.76	64.5%	

E. Coli Allocations and TMDL for Bozeman Creek				
Source	Existing Load (cfu/day)	TMDL (cfu/day)	% Reduction	
Natural Background	22050.28	22050.28	0.0%	
Agriculture/Residential	45614.06	35831.70	21.4%	
Summary	67664.34	57881.98	14.5%	

Water gaps limit cattle access to a stream and will allow the streambank to recover

Culvert replacement decreases potential sediment loading and improves access for fish and other aquatic organisms

Example BMPs

Next steps

- Watershed Restoration Plan
 - Community developed and led plan to implement the TMDL
 - Future DEQ 319 funding may be dependent upon an approved plan
- TMDL Implementation Evaluation
 - Appropriate targets
 - Ann McCauley, DEQ

Current and potential funding

Current contracts

- GLWQD septic characterization (through 2013)
- GLWQD/GGWC EPA urban waters small grant project
- Gallatin Valley Land Trust/GGWC watershed and NPS outreach/education
- MSU extension— E. coli monitoring

Potential contracts (DEQ 319)

- COB Education and outreach for MS4
- GWC Watershed Restoration Plan
- GGWC Water Quality Assistance Grant (Bridger and Hyalite)

• Funding sources

 DEQ 319, Future Fisheries Improvement Program, Watershed Planning and Assistance, EQIP, RIT/RDG

Contact Information

- Lisa Kusnierz, EPA
 - Sediment TMDLs
 - Kusnierz.Lisa@epamail.epa.gov
 - Ph. 406-457-5001
- Christian Schmidt, DEQ
 - Nutrients and pathogens TMDLs
 - <u>cschmidt2@mt.gov</u>
 - ^D Ph. 406-444-6777

Public Comment Period

- Start: September 7th, 2012
- End: October 6th, 2012 at 5:00 pm

• Final document is available at...

- <u>http://deq.mt.gov/pubcom.mcpx</u>
- State library in Helena
- Belgrade, Bozeman and Manhattan public libraries

Submit comments by end of period to;

- <u>http://comment.cwaic.mt.gov</u>
- ATTN: Christian Schmidt MDEQ PO BOX 200901 Helena MT 59620-0901

2nd Public Meeting

- Location: Manhattan Christian School
- Address 8000 Churchill Rd.
- Date: September 27th, 2012
- Time: 6:30 pm Q/A with talk at 7:30 pm