Kootenai-Fisher Project Area Sediment, Nutrients, Metals, and Temperature TMDLs


Public Meeting February 13, 2014

Presented by: Lisa Kusnierz (EPA), Lou Volpe (DEQ), & Christina Staten (DEQ)

Presentation Outline:

- Kootenai Fisher TMDL Project Area
- What are TMDLs and Why Do We Need Them?
- What's in the TMDL Document?
- Sediment, Nutrients, Temperature & Metals Assessment Methods & TMDLs
- Implementation Strategy & Next Steps
- Public Comment Information

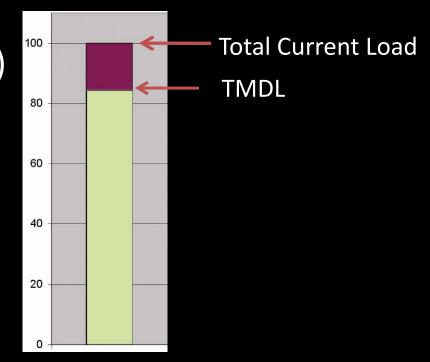
Kootenai - Fisher TMDL Project Area

Included Streams

Big Cherry Creek Bristow Creek Fisher River Lake Creek Libby Creek Quartz Creek **Raven Creek Snowshoe Creek Stanley Creek** Wolf Creek

Not Included In This Project:

Waterbody	Pollutant Impairment
Kootenai River	Temperature
Lake Koocanusa	Selenium


TMDL Overview

Presented by: Lisa Kusnierz, Sediment, Nutrients, & Temperature Project Manager

Photo Of Libby Creek

What is a TMDL?

- Total Maximum Daily Load is the amount of a pollutant that a stream can receive from all sources and still meet water quality standards
- It may be expressed as a load per unit time (e.g. lbs/day) or as a percent load reduction (e.g. 36% reduction)

Why Do We Write TMDLs?

- The Clean Water Act (CWA) requires states to assess the quality of their waters
- The goal of the CWA is to ensure that all surface waters are capable of supporting designated beneficial uses.

Water Quality Standards

- Numeric or Narrative (Descriptive)
- Protect Designated Uses Such as Agriculture & Aquatic Life

Recreation

Agriculture

Aquatic Life

Why Do We Write TMDLs?

- Water quality standards form the basis for determining whether a waterbody is supporting its beneficial uses
- DEQ uses monitoring data to assess water quality & compare to applicable water quality standards
- Waterbodies not meeting water quality standards, and therefore not supporting one or more beneficial uses, are placed on a list of impaired waters

Why Do We Write TMDLs?

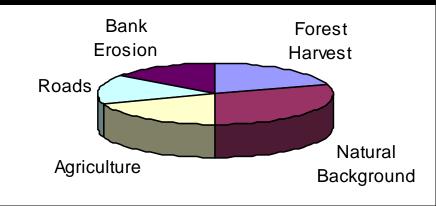
Per CWA & Montana state law, TMDLs must be developed for each waterbody - pollutant cause of impairment

Major Types of Pollutants

How Many TMDLs?

TMDLs are specific to a waterbody and a pollutant, so a single waterbody may have multiple TMDLs

Snowshoe Creek has 4: As, Cd, Pb, Zn



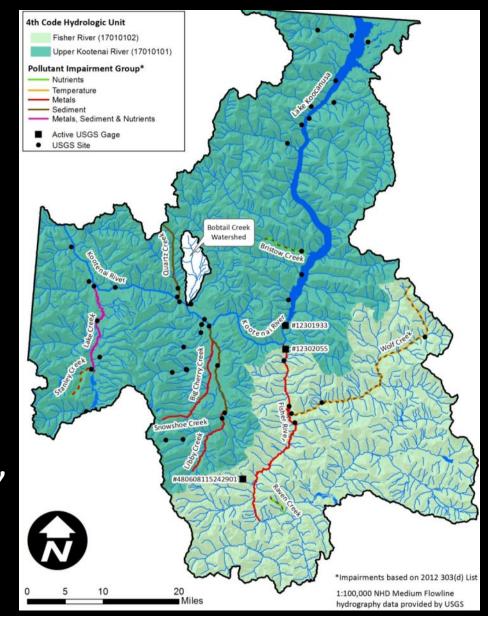
TMDL Development Steps

- Identify Water Quality Targets
- Determine Water Quality Impairment Status
- Characterize and Quantify Sources of the Problem (Source Assessment)
- Establish the TMDL & Associated Allocations

What Makes Up a TMDL or the Allowable Load?

- TMDL = Load Allocation (LA) + Wasteload Allocation (WLA) + Margin of Safety
- The TMDL must be allocated to sources
- Allocations usually based on existing loading and opportunity for reductions via BMPs

TMDL Implications

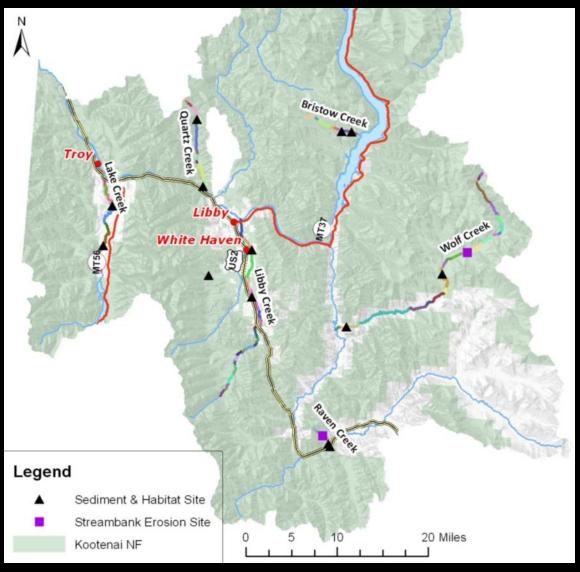

- Does <u>NOT</u> create or impose new regulations
 - Can help implement existing regulations, mainly for point source surface water discharges
- <u>Voluntary</u> for the majority of non-point sources activities, including agriculture
 - Application of water quality improvement practices is a landowner's decision

Document Outline

- **1.0** Project Overview
- **2.0** Project Area Description
- **3.0** Montana Water Quality Standards
- 4.0 Defining TMDLs & Their Components
- 5.0 8.0 Sediment, Nutrients, Temperature, & Metals TMDL Components (Impaired Waters, Targets, Source Assessment, TMDLs, Allocations)
- 9.0 Non-Pollutant Impairments
- **10.0** Water Quality Improvement Plan
- **11.0** Monitoring Strategy
- **12.0** Public Comments

Streams With TMDLs

- Sediment (4) lower
 Libby, Lake, Raven and
 Wolf Creeks
- Nutrients (3) Stanley,
 Lake, and Raven Creeks
- Temperature (1) Wolf
 Creek
- Metals (12) Big Cherry, Lake, Snowshoe, and Stanley Creeks



Sediment, Nutrients, & Temperature TMDLs

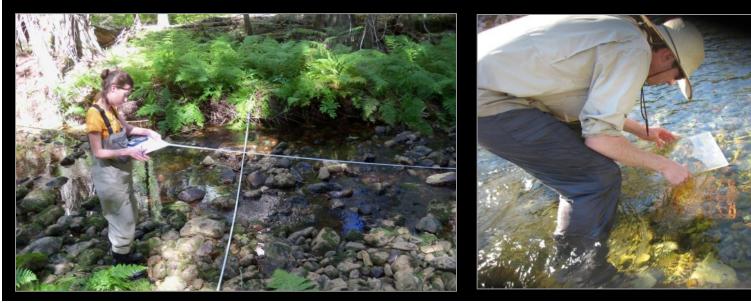
Photo Of Lake Creek

Presented by: Lisa Kusnierz, Sediment, Nutrients, & Temperature Project Manager

Sediment

TMDLs

Four Waterbodies are Impaired Due to Sedimentation & Other Sediment Related Habitat Alterations


• Lake Creek

- Libby Creek
- Raven Creek
- Wolf Creek

Monitoring was conducted on 15 reaches in 2011

Monitoring Data

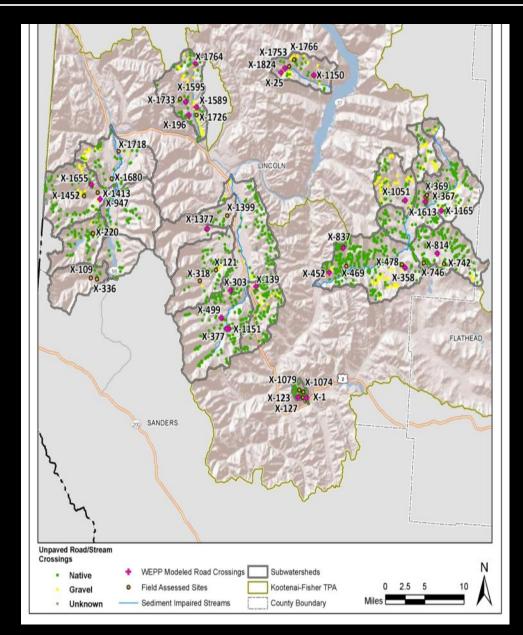
Collected in-stream data in 2011 at 15 reaches — Channel form, percent fine sediment, riparian shrub cover, bank erosion, frequency of pools and large woody debris

Data Evaluation and TMDLs

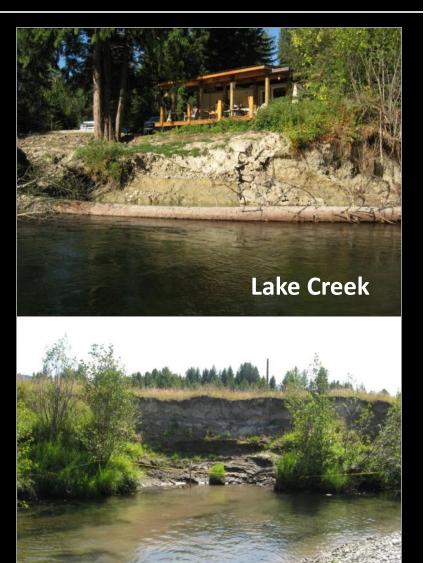
• Targets were developed to translate the narrative standard and evaluate condition of each stream

Targets based on reference data

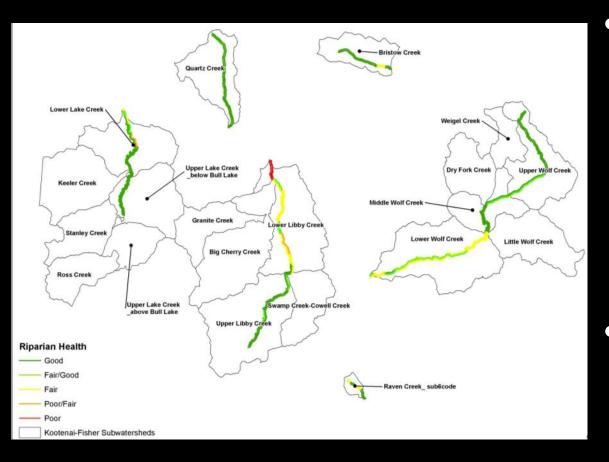
- Sediment TMDLs are based on following all reasonable land, soil, and water conservation practices
 - TMDL is based on a percent reduction approach for all significant sediment sources (point sources, unpaved roads, eroding streambanks, and upland erosion)


Permitted Point Sources

- 11 permitted point sources (MPDES)
- All within the Libby Creek watershed
- Mine operations, suction dredge, and construction stormwater
- Evaluated permit files and conditions to estimate current load and assign WLA


Unpaved Roads Assessment

- Modeled loads using data collected in 2011
- Reductions estimated based on existing BMPs and potential for additional improvements


Streambank Erosion Assessment

- Used 2011 field data to calculate annual erosion
- Estimated the reductions based on the average load for reaches where erosion was dominated by natural sources

Wolf Creek

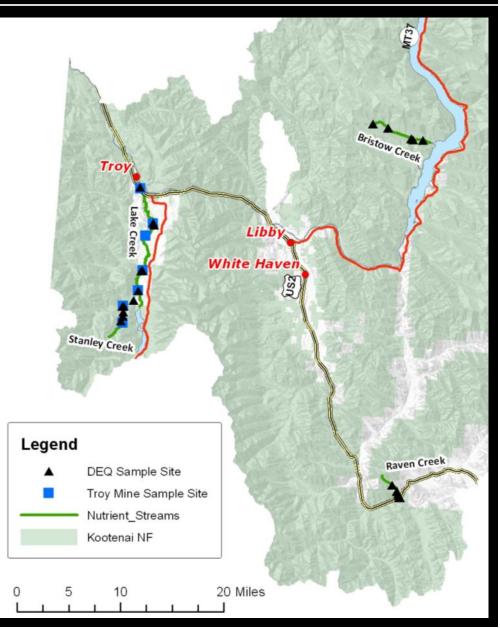
Upland Erosion Assessment

- Modeled existing conditions and then changed ground cover and riparian condition to reflect management changes
- Riparian health improvements comprise more than 98% of the estimated reduction

Example TMDL: Lower Libby Creek

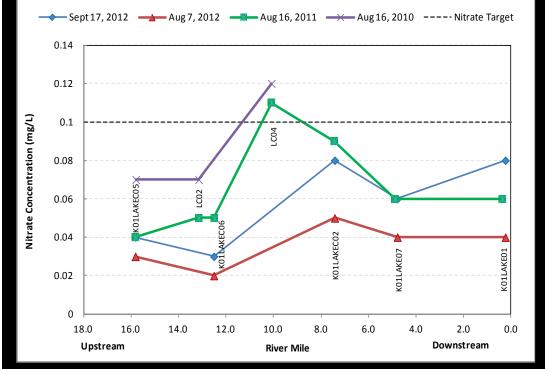
Sediment Sourc	es	Current Estimated Load (Tons/Year)	Total Allowable Load (Tons/Year)	Load Allocations (% reduction)
Roads		6.9	3.4	51%
Streambank Ero	sion	4,938	3,498	29%
Upland Sedimer	nt Sources	876	709	19%
No (1 Point Source	Montanore Mine (MT0030279)	0	24	0%
	Suction Dredge (MTG370000)	0	0	0%
	Construction Stormwater (MTR100000)	0	0	0%
Total Sediment	Load	5,821	4,234	27%

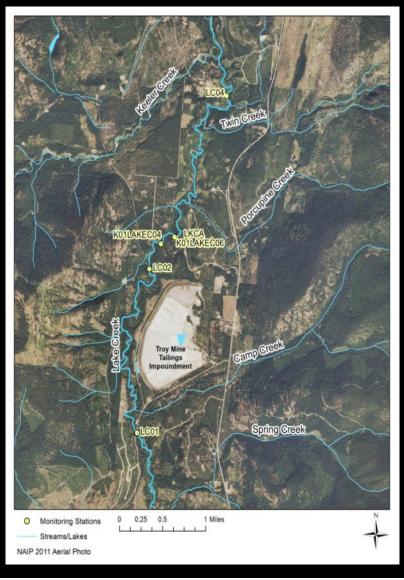
Nutrients


TMDLs

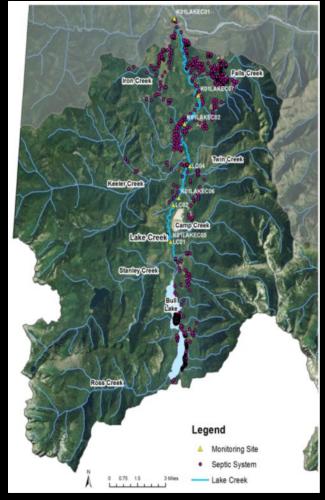
Three waterbodies: -Lake Creek (NO₃) -Raven Creek (TP) -Stanley Creek (NO₃)

<u>Monitoring</u>


Nutrient and biological data collected in 2011/2012

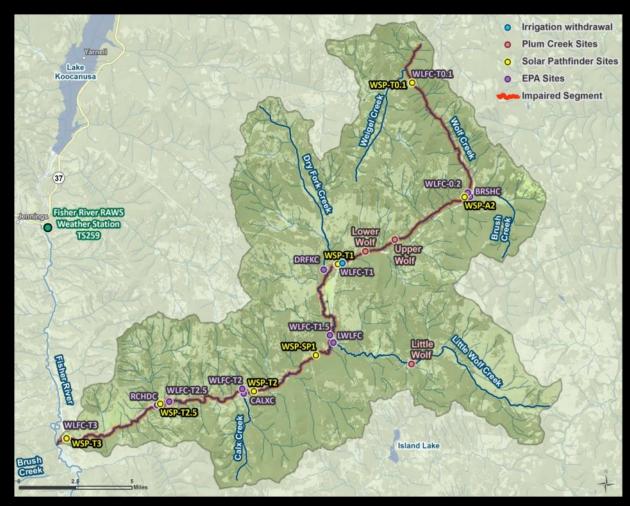

• Data also obtained from Troy Mine for Lake and Stanley creeks

Source Assessment


- Water quality data, land use distribution, and literature used for source assessment
- There are no nutrient point sources

Potential Sources & Allocations

- **Stanley:** Timber harvest & mining
- Lake: Timber harvest, mining, septic
- Raven: Sources of sediment
- Allocations to natural background and a composite of human sources

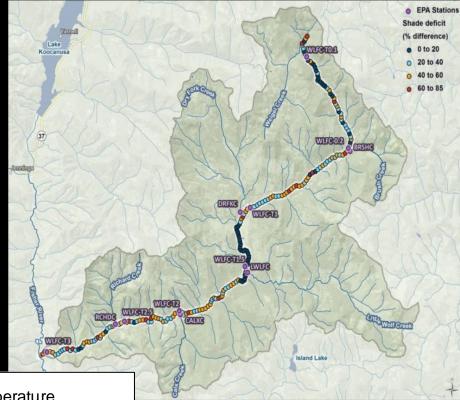

Example NO₃ TMDL: Lake Creek

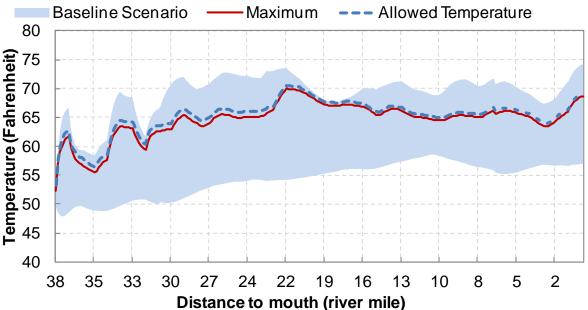
Allocation	Source Category	Current Load (lbs/day)	% Reduction	Allocation (lbs/day)
Load Allocation	Natural Background	4.0	0%	4.0
	Other sources including septics, timber harvest, and mining	16.7	0%	16.7
	Troy Mine Tailings Impoundment	40.8	43%	23.3
TMDL	All Sources	61.5	28%	44.0

81.4 cfs * 0.1 mg/L target * 5.4 (conversion factor) = 44 lbs NO₃/day

Temperature: Wolf Creek

- 7 loggers on Wolf
 Creek and at 5
 tributary sites
- 3 loggers deployed
 by Plum Creek in
 2012
- •Flow collected at all sites and shade measurements on Wolf Creek


Temperature Standard & Model Framework


- The standard allows a human caused 0.5 or 1°F change from the naturally occurring temperature
- Targets for shade, width/depth ratio
- Modeled the existing temperature and 3 scenarios:

1) improved shade; 2) improved water conservation; and 3) improved shade & water conservation [naturally occurring]

 Comparison between scenarios shows level of impairment and improvement needed

Scenario Results

Potential decrease between naturally occurring and existing 0.72°F – 7.82°F, with an average decrease of 4.6°F

Numeric and Surrogate TMDL

	0	Allocation	Percent Reduction Needed
Natural and human sources that influence temperature	6,229	5,483	12%

Source Type	Surrogate Allocation
Land uses and practices that reduce riparian health and shade provided by near-stream vegetation along Wolf Creek.	 Improve to and maintain a 50 foot buffer with medium density trees or any vegetation providing equivalent effective shade
Land uses and practices that result in the over-widening of the stream channel such that widths are increased, depths are decreased, and thermal loading is accelerated	 No increase in average width or width/depth ratios due to human-caused sources Where bankfull width < 30ft, a width/depth ratio < 21 Where bankfull width > 30ft: a width/depth ratio < 32
Inefficient consumptive water use	 Application of all reasonable water conservation practices
Surrogate TMDL	 Application of all reasonable land, soil, and water conservation practices for human sources that could influence stream temperatures. This primarily includes those affecting riparian shade, channel width, and in-stream flow.

Metals TMDLs for the Kootenai-Fisher Project Area

Photo of Troy Mine

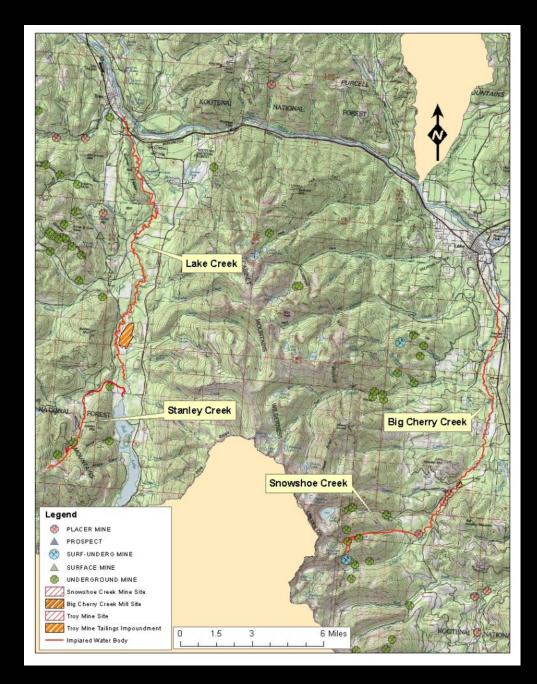
09/10/2008 14:57

Metal TMDLs

Stanley Creek

- Copper
- Lead
- Zinc

Lake Creek


- Copper
- Lead

Snowshoe Creek

- Arsenic
- Cadmium
- Lead
- Zinc

Big Cherry Creek

- Cadmium
- Lead
- Zinc

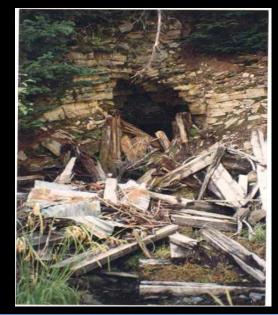
Metals Sources

Snowshoe Creek

- Reclaimed Snowshoe mine site
- Stream side tailings downstream of mine site
- Several inactive/abandoned mines
 - St. Paul,
 - Texas Ranger

Big Cherry Creek

- Big Cherry Creek mill site
- Copper Reward, Seattle, Silver Tip and Fairbault Mines (Headwaters of Big Cherry Creek)
- Big Sky and Missouri (Leigh Creek)
- Various placer operations
- Loading from Snowshoe Creek


Metals Sources

Stanley Creek

- Land disturbances associated with the Troy Mine, and other historical mining operations
 - metals loading associated sediment production, i.e. high flows, and land disturbance contributing sediment
- Several small inactive load mines: Daniel Lee and Blue Bird

Lake Creek

- Numerous abandoned underground lode mines
 - Copper Creek watershed
 - North Fork watershed
- Troy Mine tailing impoundment
- Effects of metals loading from Stanley Creek

Data Collection & Impairment Determination

- Sampling conducted in 2009- 2012
- Sampled and assessed for: Aluminum (Al) Arsenic(As), Cadmium (Cd), Copper (Cu), Iron (Fe), Lead (Pb), Selenium (Se), Silver (Ag) and Zinc (Zn)
- High and low flow conditions
- Updated DEQ assessment:
 - Even with limited data:
 - Some stream showed no metals impairment conditions (Fisher River and Libby Creek)
 - Some streams indicated impairment for metals (not necessarily for original listings)
 - Addition of new metals/waterbody combinations to impairment list
 - Big Cherry (Cd, Pb)
 - Snowshoe (As, Pb)
 - Stanley Creek (Pb, Zn)
 - Elimination of other metals/waterbody combinations
 - Lake Creek (Cd, Hg, Zn)
 - Beneficial uses found to be impaired include:
 - Aquatic Life Support
 - Drinking Water
 - Agriculture
 - Recreation

Numeric Water Quality Standards

Copper Example

- Fixed Numeric: Human Health: 1,300 μg/l
- Variable Numeric

Aquatic Life: (varies with hardness)

At <u>25 mg/L</u> hardness-

- Acute: 3.79 µg/l (do not exceed)
- Chronic: 2.85 μg/l (96 hour mean)

At 400 mg/L hardness-

- -Acute: 14.0 μ g/l (do not exceed)
- Chronic: 9.33 µg/l (96 hour mean)

Metals TMDL Development Triggers

- Greater than 10 % of recent analytical results exceed Chronic Aquatic Life (CAL) targets.
- At least one analytical result is greater than twice the Acute Aquatic Life (AAL) target.
- At least one analytical result exceeds the Human Health (HH) target.
- Water column metals concentrations are elevated under both high and low flows regimes and sediment metals concentrations greatly exceed (more than 2X) Probable Effects Level (PELs).

TMDL & Allocations

TMDL =

 \sum Load Allocations (background) + \sum Wasteload Allocation (mining load)

- Background load (naturally occurring conditions in the watershed)
 - Calculated from median high and low flow data from unaffected streams in the Kootenai Fisher project area
- Mining loads are composite, to account for all mines, mining activity and associated disturbances (mine tailings, open adits, roads etc.)

Example TMDLs

Big Cherry Creek: Example Metals TMDLs and Allocation

Metal	Flow	LA _{nat}	WLA _{MS}	Existing Load	TMDL
Cadmium	High flow	0.0324	0.0081	0.320	0.0405
	Low flow	0.0018	0.0036	0.038	0.0054
Lead	High flow	0.203	0.016	1.701	0.219
	Low flow	0.011	0.024	0.031	0.035
Zinc	High flow	4.05	10.94	24.30	14.99
	Low flow	0.22	1.88	2.24	2.10

Units are lbs/day

Watershed-Wide Metals Reductions

- Arsenic 0% 23%
 Cadmium 86%-97%
- Copper 20%-80%
- Lead 0% 94%
- Zinc 0% 91%

Implementation Strategy & Next Steps

Presented by: Christina Staten, Project Coordinator

Photo of Big Cherry Creek

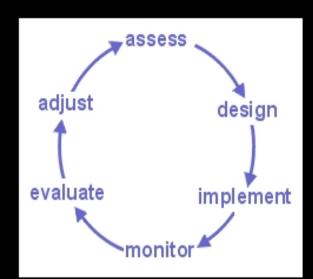
TMDL Implementation

- A completed TMDL provides information on water quality problems and strategies to reduce pollutants by changing land and water management activities
- The TMDL document provides a basis for action, but TMDLs are not self-implementing
- It is up to local stakeholders, organizations, and government agencies to determine how to best use the information and implement a restoration strategy

Implementation Strategy

Sediment, Nutrient, and Temperature Goals :

- Improve and restore riparian corridors
- Improve land use management practices to reduce pollutant loading while still providing viable and sustainable economic growth


Metals Goals:

- Prevent contaminated sediment and waste rock/ tailings from migrating into adjacent surface waters
- Reduce or eliminate concentrated runoff and discharges that generate sediment and/or heavy metals contamination to adjacent surface waters and groundwater
- Minimize erosion of mineralized soils

TMDL Implementation

Adaptive Management Approach

An adaptive management approach works in cooperation with monitoring, and as new information is collected, it allows for adjustments to restoration goals or pollutant targets, TMDLs, and/or allocations

Next Steps

Development of the Watershed Restoration Plan

- Identify priorities
- Refine source assessment

Seek Funding to Implement Projects

- Potential Funding Sources:
 - Federal 319 funds administered by DEQ
 - FWP Future Fisheries Improvement Program
 - DNRC Watershed Planning and Assistance grants
 - NRCS Environmental Quality Incentives Program (EQIP)

DEQ's Watershed Protection Program

Helps With or Provides:

- Technical Assistance
- Monitoring Assistance
- Funding
- TMDL Implementation Evaluations

Robert Ray, Section Supervisor: rray@mt.gov, 444-5319

Public Comment Period

- February 3 March 4
- Document available at: Libby and Troy Public Libraries and DEQ website

http://deq.mt.gov/pubcomm.mcpx

• Submit comments in writing here, via mail, or electronically

DRAFT

Kootenai – Fisher Project Area Metals, Nutrients, Sediment, and Temperature TMDLs and Water Quality Improvement Plan

February 2014

Steve Bullock, Governor Tracy Stone-Manning, Director DEQ

Document Number K01-TMDL-04a

Questions?

Lou Volpe LVolpe@mt.gov 406-444-6742

Lisa Kusnierz Kusnierz.Lisa@epa.gov 406-457-5001