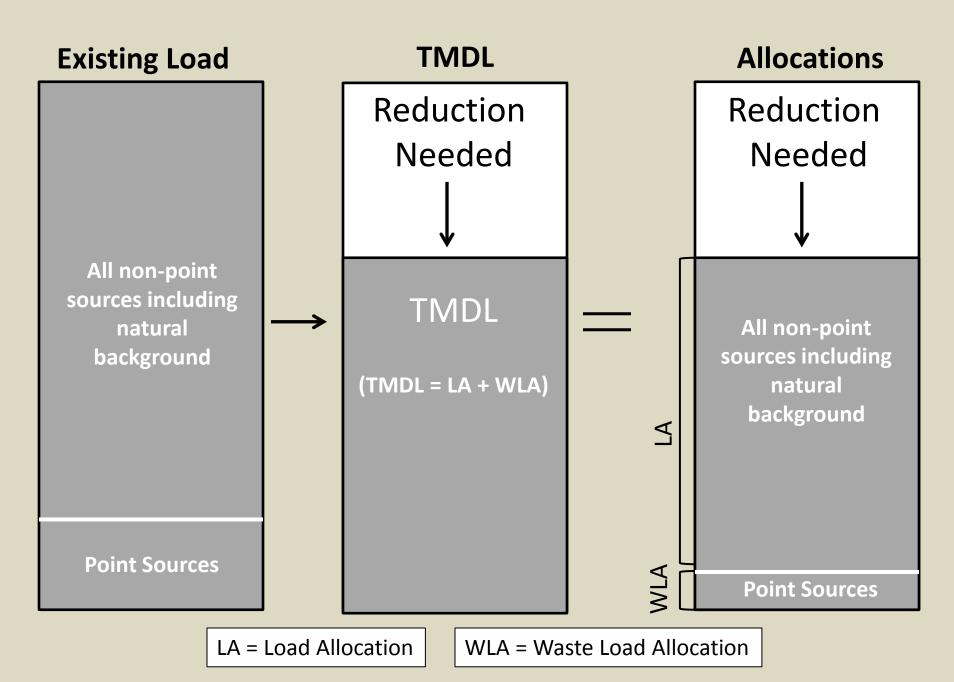
Flint Creek Watershed Nutrient TMDLs

Public Meeting Presentation 12/04/13

Smart Creek

What is a TMDL?

TMDL = Total Maximum Daily Load


The amount of a pollutant that a waterbody can receive from point, nonpoint, and natural sources and still meet water quality standards

A pollutant can come from multiple sources

The document containing the TMDLs is also referred to as the TMDL

TMDL development involves assessing water quality, determining if there is a problem, developing solutions, and implementing the solutions

What is a TMDL?

What is involved?

Sample streams (is there a problem?)

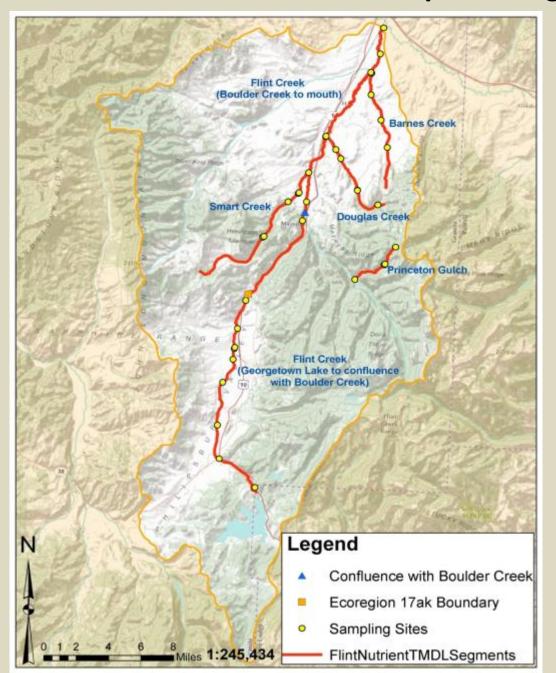
Determine the source(s) of the problem (30,000 ft view)

Quantify the problem

Determine potential solutions

When the TMDL is completed:

Implement solutions/on-the-ground fixes


Monitor progress and success

The Flint Nutrients TMDL document is **a part** of a process, not the end.

Regulatory Framework

- 1972 Federal Clean Water Act
- Montana Water Quality Standards
- 303(d) list Evaluation of stream health
- Prepare TMDLs for all impaired streams (Montana Law)

Flint Creek Watershed and nutrients impaired segments

Current (2012 IR) 303(d) Nutrients Listed segments and Causes that will be addressed

Waterbody & Location Description ¹	Waterbody ID	Impairment Cause ²	Pollutant Category	Impairment Cause Status ²	Included in 2012 Integrated Report ³
Barnes Creek, from	MT76E003_070	TN	Nutrients	TN TMDL in this document	Yes
headwaters to mouth (Flint Creek)		Nitrate	Nutrients	Addressed by TN TMDL in this document	Yes
(Creek)		TP	Nutrients	TP TMDL in this document	Yes
		Chlorophyll- <i>a</i>	Not Applicable; Non-pollutant	Addressed by TN and TP TMDLs in this document	Yes
Douglas Creek , confluence of Middle and South forks to	MT76E003_020	Nitrate	Nutrients	Nitrate TMDL in this document	Yes
mouth (Flint Creek), T9N R13W S10		TP	Nutrients	TP TMDL in this document	No
Flint Creek, Georgetown Lake to confluence with Boulder Creek	MT76E003_011	TP	Nutrients	TP TMDL in this document	No
Flint Creek, Boulder Creek to	MT76E003 012	TN	Nutrients	TN TMDL in this document	Yes
mouth (Clark Fork River)	_	TP	Nutrients	TP TMDL in this document	Yes
Princeton Gulch, headwaters to mouth (Boulder Creek)	MT76E003_090	Nitrate	Nutrients	Nitrate TMDL in this document	Yes
Smart Creek, headwaters to	MT76E003_110	TN	Nutrients	TN TMDL in this document	No
mouth (Flint Creek), T9N R13W S21		ТР	Nutrients	TP TMDL in this document	Yes

¹ All waterbody segments within Montana's Water Quality Integrated Report are indexed to the National Hydrography Dataset (NHD)

² TN = Total Nitrogen, TP = Total Phosphorus, Nitrate = Nitrates = Nitrogen, Nitrate = NO₂+NO₃ = Nitrite + Nitrate; The term "nitrate" is used throughout the document and refers to any of the various nitrate-related impairment causes listed in the "2012 Water Quality Integrated Report."

³ Impairment causes not in the "2012 Water Quality Integrated Report" were recently identified and will be included in the 2014 Integrated Report.

Determining Nutrient Sources (Source Assessment)

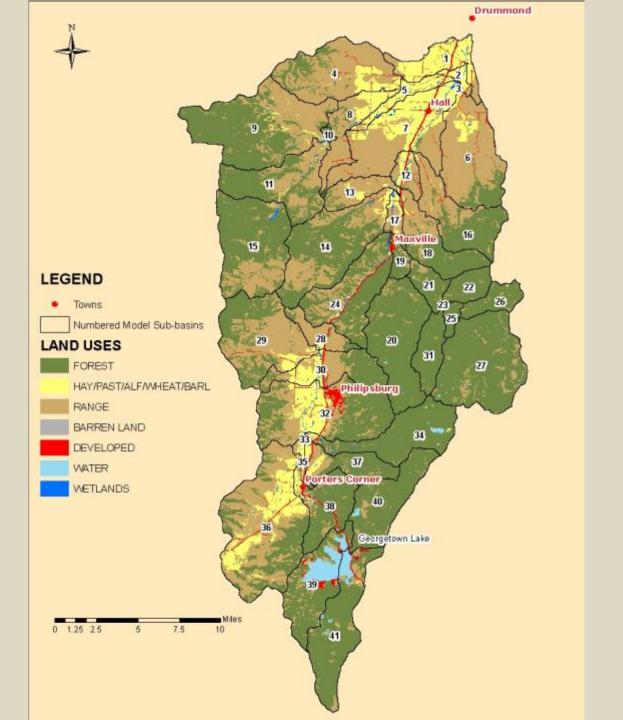
- Driving trip along impaired segments
- Review of aerial imagery, cadastral, and land use maps in GIS
- Database searches for point source permits and water quality data
- SWAT model: Eric Regensburger

Soil and Water Assessment Tool (SWAT)

- Watershed scale model that incorporates climate, land use, soils, groundwater and topography to predict stream flows and quality
- CLIMATE (daily values for up to 7 climate stations)
 - Snow fall, snow melt (timing and amount)
 - Precipitation
 - Temperature (daily minimum and maximum)
 - Evapotranspiration
 - Wind, Solar radiation, Humidity
 - Accounts for variation due to elevation
- LAND USE
 - Forest
 - Canopy shading, seasonal growth/die-off
 - Rangeland
 - Summer grazing timing, density, and animal type
 - Manure production, grazing volume, trampling
 - Seasonal growth/die-off

SWAT (continued)

- Hay and Pasture
 - Irrigation timing and rates
 - Harvest timing and biomass remaining
 - Winter grazing timing, density and animal type
 - Manure production, grazing volume, trampling
- Agriculture
 - Crop type with management specific to each type
 - Alfalfa, Hay, Spring Wheat, Barley
 - Timing and amount of irrigation and fertilizer
 - Irrigation source (canal, stream, groundwater, etc.)
 - Harvesting timing and biomass remaining
- Urban
 - Amount of impervious surface with increasing density
 - Grass irrigation and fertilizer (rates and timing)
 - Septic and Philipsburg wastewater added as point sources

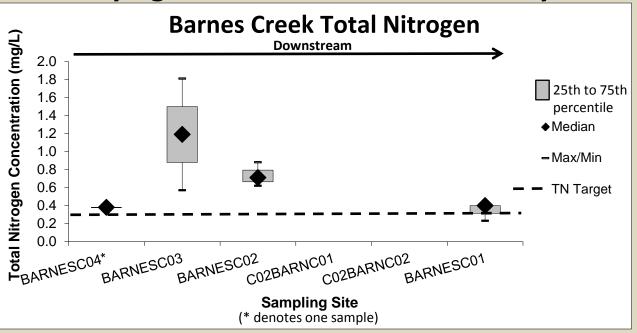

SWAT (continued)

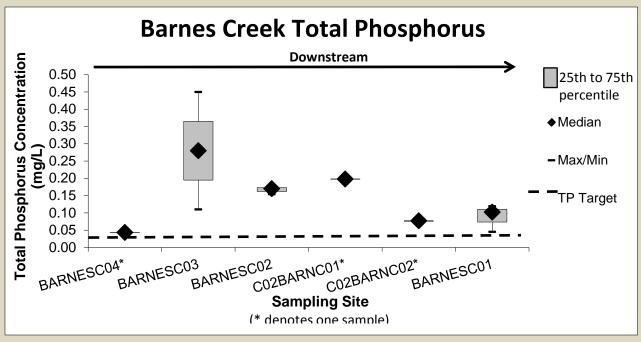
- RESULTS

- Calibrate measured daily stream flow patterns using climate, land use, soil, and groundwater factors
- Calibrate measured intermittent nutrient water quality results using land use, soil, and groundwater factors
- Existing conditions calibrated model used for source assessment (i.e. determine sources of nutrients)

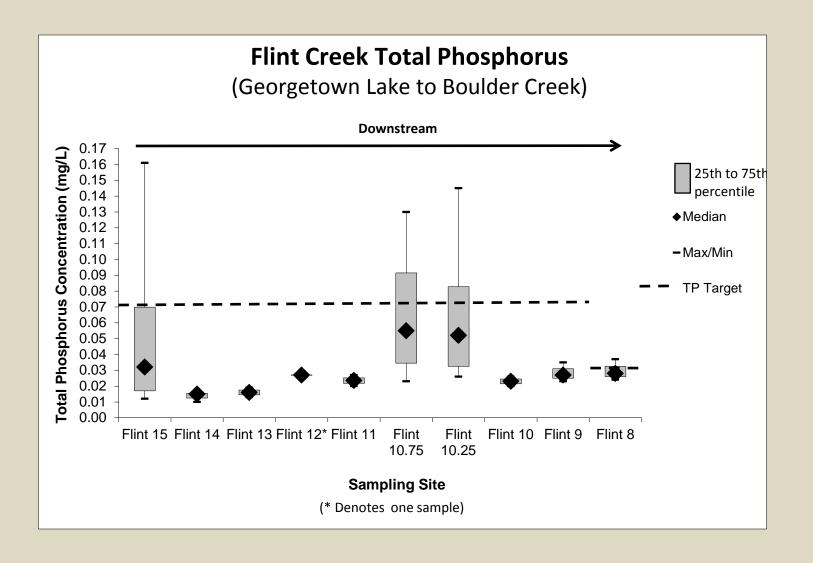
- SCENARIOS

- Compare nutrient loading reductions from BMPs
 - Assess improvements in terms of land use and locations
 - Watershed group uses scenarios to determine best bang for the buck to reduce nutrient loading

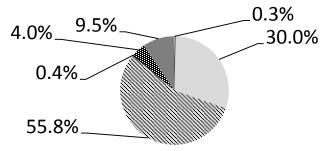

The Process


- Determine potential nutrient sources within the watershed for each listed segment (SWAT Model)
- There are up to two types of load allocations for each TMDL: 1) Composite load (all non-point sources) and 2) Philipsburg WWTP wasteload allocation (only on Flint Creek segments)
- Set TMDL based on Middle Rockies Level III Ecoregion proposed nutrient criteria¹ (TN Criteria: 0.300 mg/L; TP Criteria: 0.030 mg/L; Nitrate²: 0.100 mg/L) and the proposed criteria specific to Flint Creek from the Georgetown Lake Dam to the ecoregion 17ak boundary (TN Criteria: 0.500 mg/L; TP Criteria: 0.072 mg/L; Nitrate²: 0.100 mg/L).
- Used data collected from the impaired streams to determine the current loading and necessary reductions
- Used SWAT model to demonstrate scenarios where reductions could occur

¹ http://deq.mt.gov/wqinfo/standards/NumericNutrientCriteria.mcpx

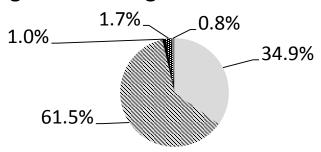

² Suplee et al. 2008

Quantifying the Problem – Water Quality data



Quantifying the Problem-Water Quality data

Source Assessment – SWAT Model Results

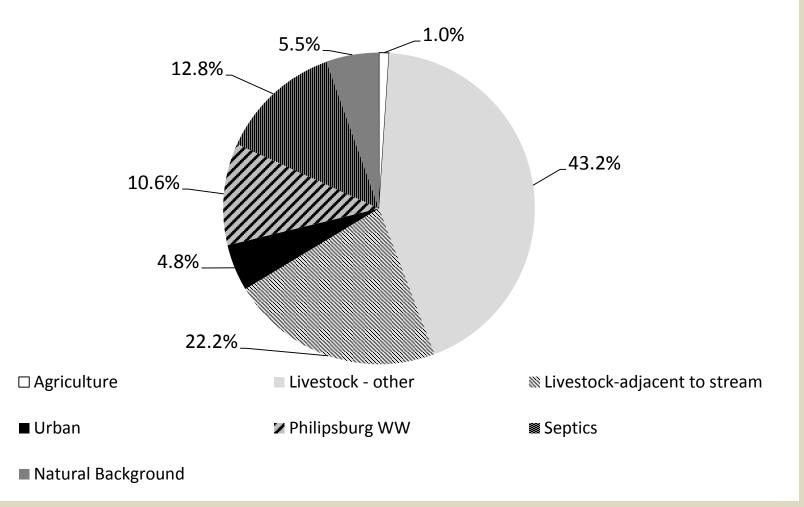

Barnes Creek - Total Nitrogen Percent Loading from Existing Conditions Land Uses

- ☐ Agriculture
- Livestock-adjacent to stream
- **■** Septics

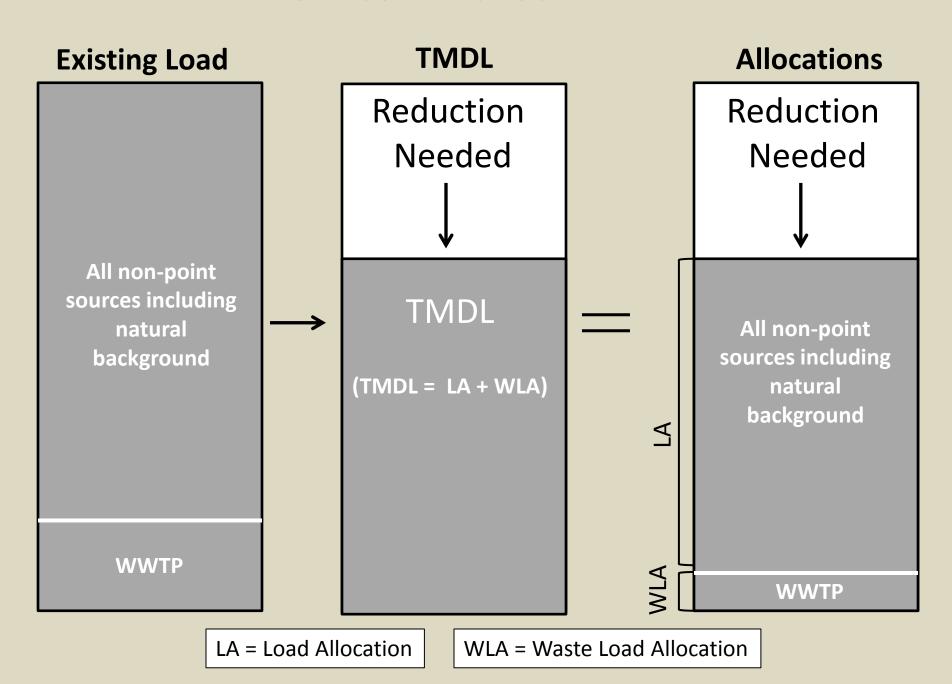
- Livestock other
- Urban
- Natural Background

Barnes Creek - Total Phosphorus Percent Loading from Existing Conditions Land Uses

■ Livestock - other

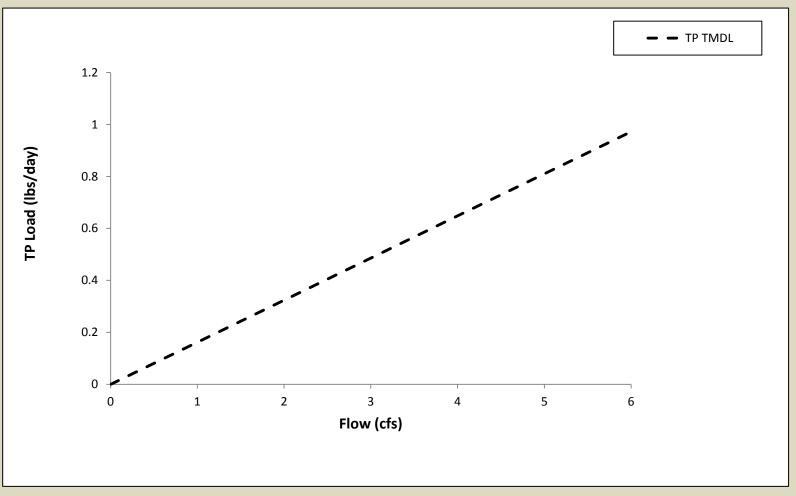

■ Urban

■ Septics


■ Natural Background

Source Assessment – SWAT Model Results

Reminder - What is a TMDL?


Equation 1: TMDL = (X)(Y)(5.4)

TMDL= Total Maximum Daily Load in lbs/day

X = water quality target

Y = streamflow in cubic feet per second

5.4 = conversion factor

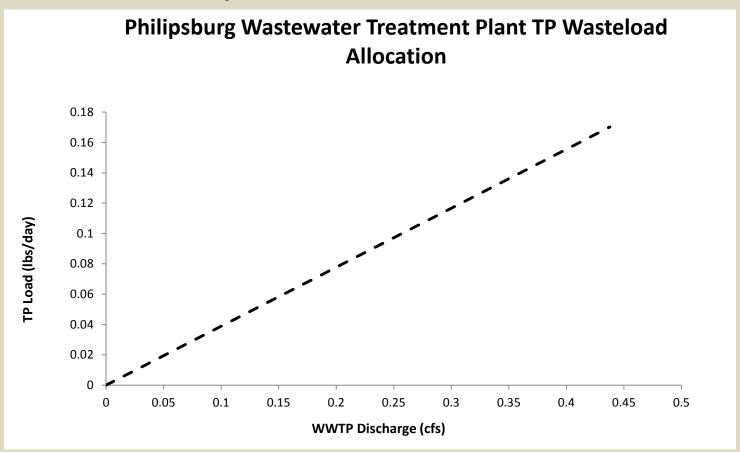
Equation 2: TMDL = LA

LA = Composite Load Allocation to all nonpoint sources including natural background sources

Equation 3: TMDL = LA + WLA

LA = Composite Load Allocation to all nonpoint sources including natural background sources

WLA = Waste Load Allocation to the Philipsburg WWTP (for the two Flint Creek segments only)


Equation 4: WLA_{TP} = (X)(Y)(5.4)

WLA_{TP} = Total Phosphorus Wasteload Allocation in lbs/day

X = water quality target for Flint Creek from Georgetown Lake outlet to the ecoregion 17ak boundary (0.072 mg/L; **Table 5-2**)

Y = WWTP discharge in cubic feet per second

5.4 = *conversion factor*

TMDLs, Allocations, and Current Loading

Example: Barnes Creek

Table 5-19. Barnes Creek TN Example TMDL, Load Allocation, and Current Loading

Source Category	Allocation & TMDL (lbs/day) ¹	Existing Load (lbs/day) ¹
Composite Load	4.1	7.7

¹ Based on a flow of 2.5 cfs

Table 5-20. Barnes Creek TP Example TMDL, Load Allocation, and Current Loading

Source Category	Allocation & TMDL (lbs/day) ¹	Existing Load (lbs/day) ¹
Composite Load	1.1	4.2

¹ Based on a flow of 6.53 cfs

Equation 5: Total Existing Load = (X)(Y)(5.4)

X = measured concentration in mg/L (associated with the median reduction for measured loads that exceed the TMDL or with the median measured load if none exceed the TMDL)

Y = streamflow in cubic feet per second (associated with the median reduction for measured loads that exceed the TMDL or with the median measured load if none exceed the TMDL)

5.4 = conversion factor

Equation 6: Existing Composite Load = Total Existing Load — Existing WWTP Load

Equation 7: Load Reduction = ((Measured Load – TMDL) / Measured Load)*100

Measured Load = measured nutrient concentration in mg/L*measured flow in cfs*5.4 TMDL = target concentration in mg/L*measured flow in cfs*5.4

Equation 8: Concentration Reduction = ((Measured Concentration in mg/L – Target Concentration in mg/L) / Measured Concentration in mg/L)*100

Nutrient Uptake Complications

- Instream measured load does not necessarily equal the total load from all sources
- When nutrients enter a stream there is uptake by organisms in the water (e.g., algae, aquatic plants), which reduces the amount of nutrients in the water column
- Excessive loading can occur while measured nutrient values meet targets
 - Expect to see excessive algal growth and we have seen that on these streams

TMDLs, Allocations, and Current Loading

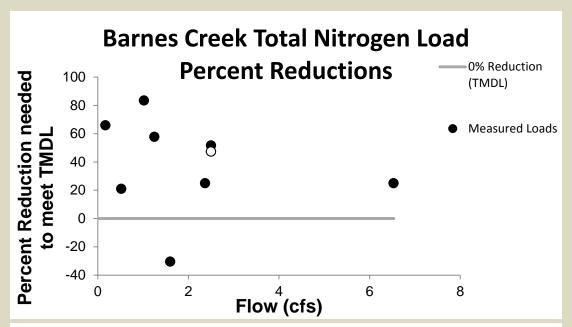
Example: Flint Creek (Georgetown Lake to Boulder Creek)

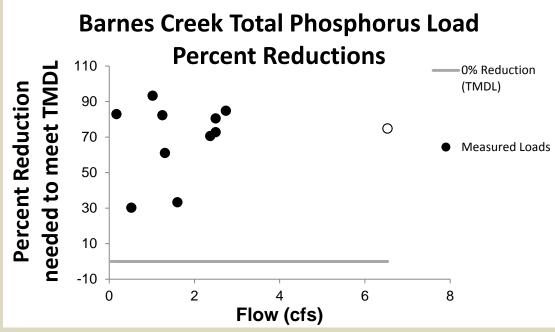
Table 5-23. Flint Creek (Georgetown Lake to ecoregion 17ak boundary) TP TMDL, Load Allocations, Wasteload Allocation, and Current Loading Example 1

Source Category	Allocation & TMDL (lbs/day) ¹	Existing Load (lbs/day) ¹
Composite Load	25.55	6.9
Wasteload (Philipsburg WWTP)	0.06	2.7 ²
	TMDL = 25.61	Total = 9.6

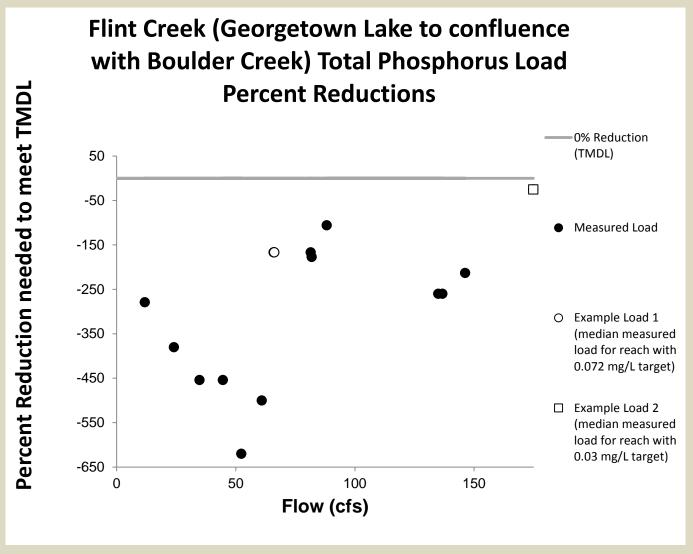
¹ Based on a median growing season flow of 65.87 cfs

Table 5-24. Flint Creek (ecoregion 17ak boundary to confluence with Boulder Creek) TP TMDL, Load Allocations, Wasteload Allocation, and Current Loading Example 2


Source Category	Allocation & TMDL (lbs/day) ¹	Existing Load (lbs/day) ¹
Composite Load	28.26	19.96
Wasteload (Philipsburg WWTP)	0.06	2.7 ²
	TMDL = 28.32	Total = 22.66


¹ Based on a median growing season flow of 174.84 cfs

² Based on summer growing season monthly averages from the Philipsburg WWTP


² Based on summer growing season monthly averages from the Philipsburg WWTP

Reductions

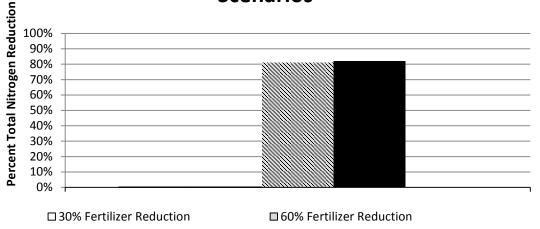
Reductions

Based on concentration data with no associated flow, reductions of 1% to 55% are required

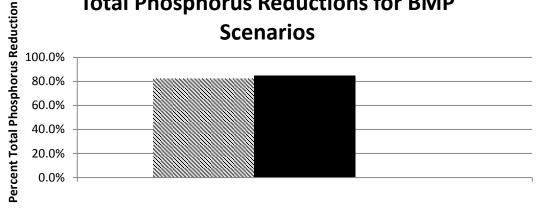
Potential Solutions:

Best Management Practices (BMPs):

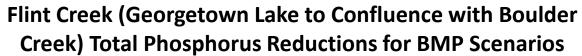
In some cases landowners are already implementing BMPs and may only need to continue with current practices

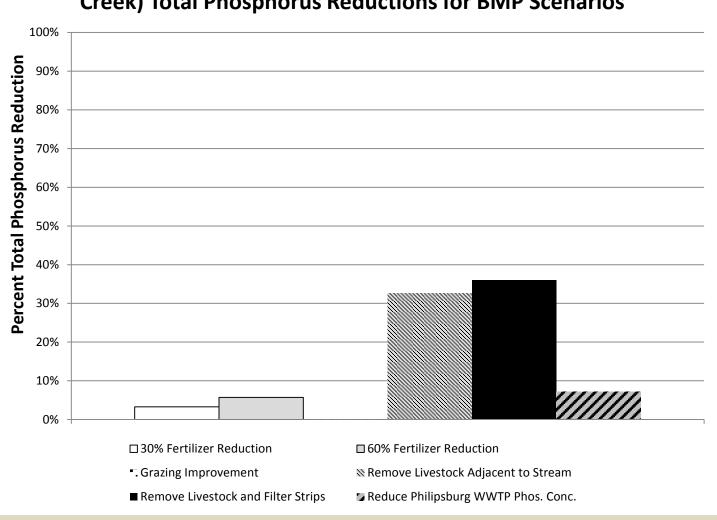

Livestock – riparian buffer strips, off stream water tanks, manure management, rotational grazing, water gaps

Timber harvest activities – streamside management zone, appropriate road building, grading, and maintenance


Septic – BMPs are used in installation, may want to look into potential effects of future growth (adding septic systems)

Reduction Scenarios


Barnes Creek Total Phosphorus Reductions for BMP Scenarios



■ Remove Livestock and Filter Strips

Remove Livestock Adjacent to Stream

Reduction Scenarios

Potential Solutions:

We recognize that:

These are small streams and therefore sensitive to impacts

 Adaptive management will be necessary to evaluate BMP effectiveness and determine what reductions are attainable

Implementing Solutions and Monitoring Progress and Success: The Next Steps

Develop a Watershed Restoration Plan that:

- 1) Identifies specific conditions under which BMPs may be implemented
- 2) Identifies what specific BMPs will be used
- 3) Contains a plan for monitoring the progress and success that results

Contacts:

Paul Kusnierz, Nutrients Project Manager, pkusnierz@mt.gov, (406) 444-4205

Eric Regensburger, Water Quality Modeler, eregensburger@mt.gov (406) 444-6714

Laura Anderson, Watershed Protection Section, landersen3@mt.gov, (406) 444-0549

Additional Information:

http://montanatmdlflathead.pbworks.com/