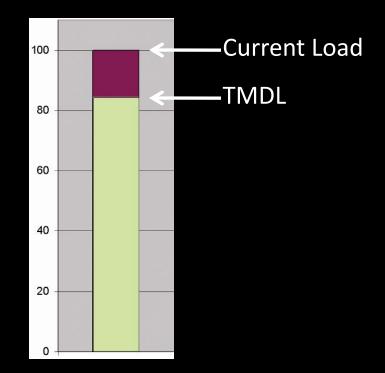
Tobacco Planning Area: Nutrient and Temperature TMDLs

Public Meeting July 23, 2014

Presented by Lisa Kusnierz, EPA Montana Office


Background

- Waterbodies are classified by beneficial use
 - Drinking Water, Agriculture, Recreation, Aquatic
 Life
- We use criteria to assess waterbodies
 - Numeric Criteria
 - Narrative Criteria
- Streams and lakes not supporting their beneficial use(s) are impaired and require a TMDL
 - Montana State Law and Federal Clean Water Act

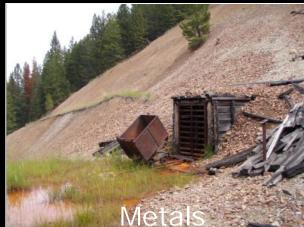
What is a TMDL?

- Total Maximum Daily Load is the amount of <u>pollutant</u> a waterbody can receive from all sources and still meet water quality standards.
- It may be expressed as a load per unit time (e.g., lbs/day) or
 as a percent load reduction (e.g., 36% reduction)

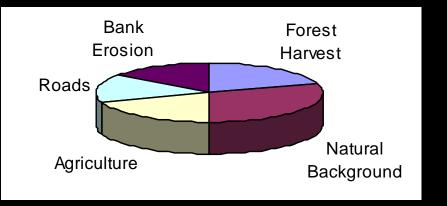
What is a TMDL?

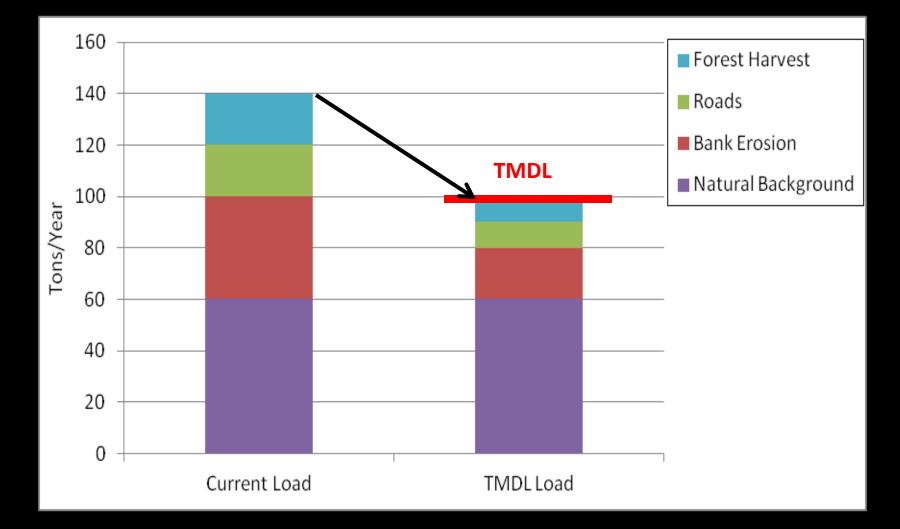
 TMDLs are specific to a waterbody and a pollutant, so a single waterbody may have multiple TMDLs

– Lime Creek has 2: Total Phosphorus, Total Nitrogen


- The document itself is sometimes referred to as a TMDL
 - Tobacco Planning Area TMDL

Pollutant Groups

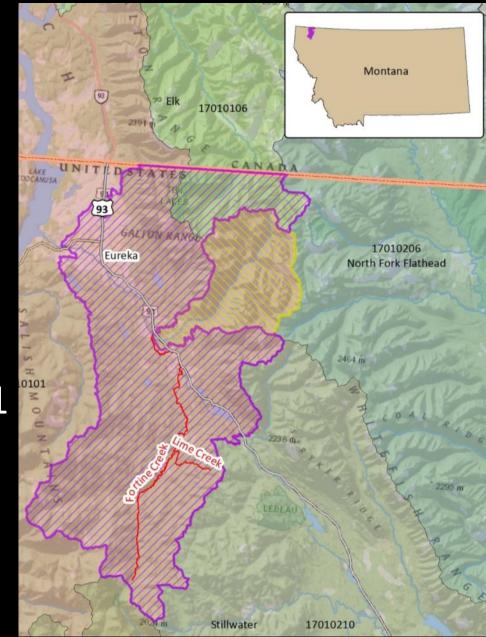



TMDL Development Steps

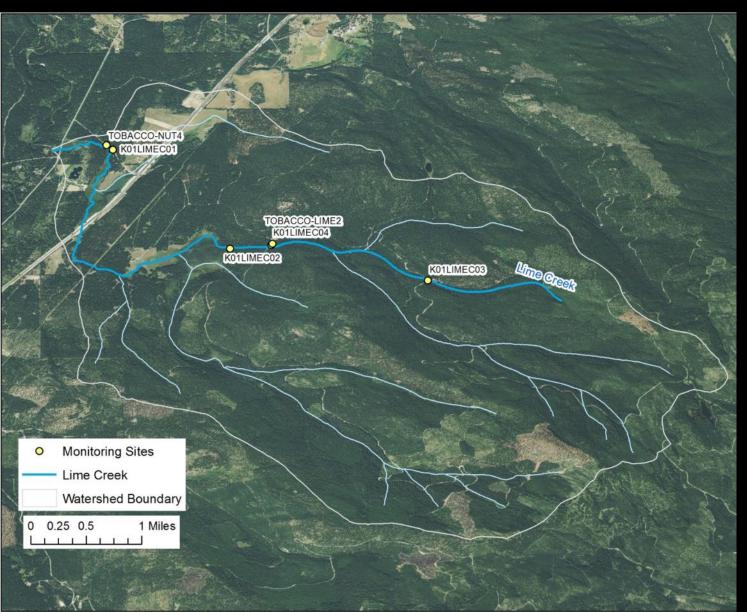
- Identify Water Quality Targets
- Determine Water Quality Impairment Status
- Characterize and Quantify Sources of the Problem (Source Assessment)
- Establish the TMDL & Associated Allocations

What makes up a TMDL or the Allowable Load?

- TMDL = Load Allocation (LA) + Wasteload Allocation (WLA)
 + Margin of Safety
- The TMDL must be allocated to sources
- Allocations usually based on existing loading and opportunity for reductions via best management practices



Document Layout


- 1. Introduction
- 2. Watershed Description
- 3. Water Quality Standards Overview
- 4. TMDL Process Overview
- 5 6. Separate Sections for Temperature & Nutrients
 - -Impaired waters, targets, source assessment, TMDLs/allocations
- 7. Water Quality Improvement Plan & Monitoring Strategy

TMDL Scope

- Temperature: Fortine Creek
- Nutrients: Lime Creek
- Sediment: Completed in 2005/2011

Lime Creek Nutrients

•Growing season sampling in 2007/2008 and 2012/2013

 Includes water and biological data

ΤР

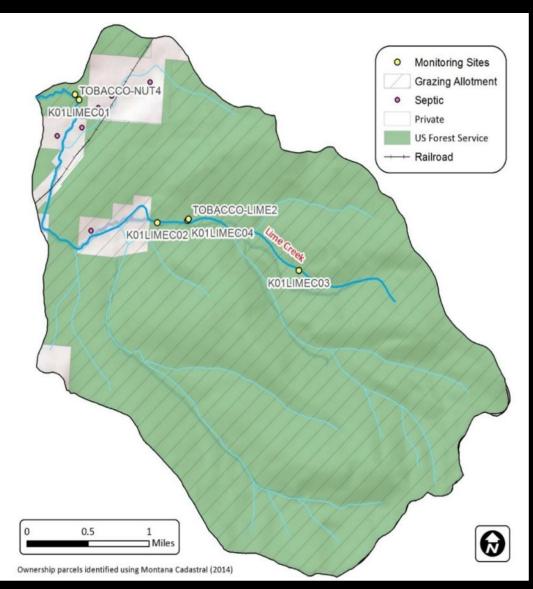
13

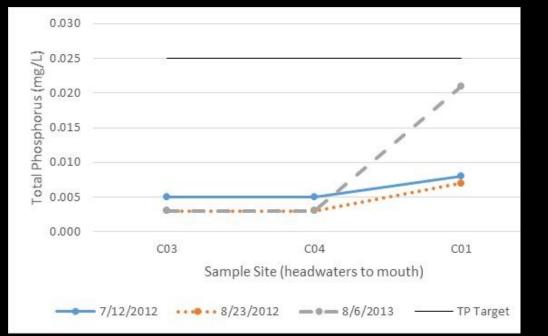
0.025

0

PASS

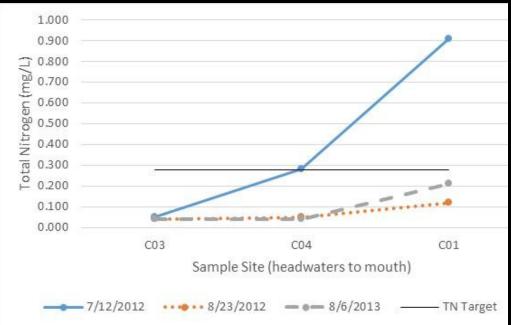
Data


Nutrient Parameter		Sample Timefra		Sample Size		Targe	et	Min	Max	Median	
NO ₃ +NO ₂ , mg/L		2003-20)13	13		0.10	0	<0.005	0.020	0.005	
TN, mg/L		2003-20	013	12		0.27	5	<0.04	0.91	0.10	
TP, mg/L		2003-20	013	13		0.02	5	<0.003	0.024	0.007	
Chlorophyll	-a, mg/m ²	2012		3		150		<50 ²	1.1	<50 ²	
AFDM, g/m	2	2012		3		35		<35 ²	118	<35 ²	
Macroinver HBI	tebrate	2003-20)12	4		4.0		1.9	4.6	3.6	
Periphyton		2003-20)12	5		50		25	68	57	
											-
		Target	Target	Binomial			Chl-a	AFDM	Macro		
	Sample	Value	Exceed	Test	T-t	est	Test	Test	Test	Peri-	TMDL
Nutrient	Size	(mg/L)	-ances	Result	Res	sult	Result	Result	Result	phyton	Required ?
NO ₃ +NO ₂	13	0.10	0	PASS	PAS	SS					NO
TN	12	0.275	2	FAIL	PAS	SS	Pass	Fail	Fail	Fail	YES


PASS

YES

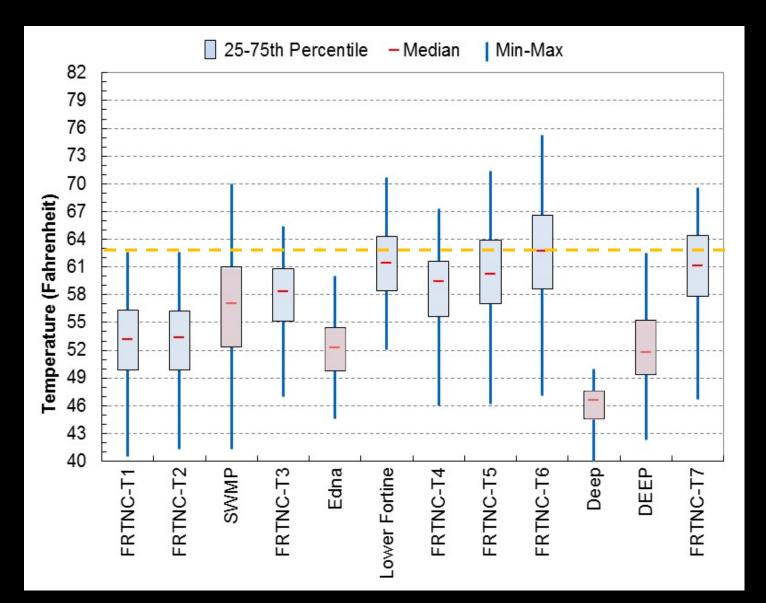
Source Assessment


- Water quality data, land use distribution, and literature used for source assessment
- There are no nutrient point sources
- Potential sources: grazing, timber harvest, development, natural

Source Assessment & Allocations

- Most loading near mouth
- Area of mixed land use
- Allocations to natural background and a composite of human sources

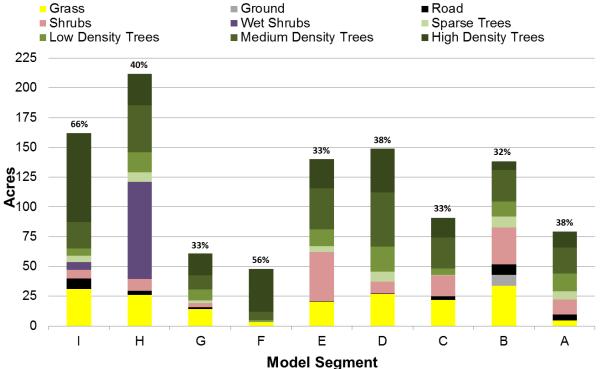
Example TMDL: Lime Creek TN


		Current		
	Source	Load		Allocation
Allocation	Category	(lbs/day)	% Reduction	(lbs/day)
	Natural	1.01	0%	1.01
	Background	1.01	U%	1.01
Load Allocation	All other nonpoint sources	22.58	73%	6.12
TMDL	All Sources	23.59	70%	7.13

Fortine Creek Temperature

- 2012: 7 loggers on Fortine Creek and 2 tributary sites
- 2012: 3 loggers deployed by USFS
- 2012: Flow collected at all sites and shade measurements on Fortine Creek
- 2003-2005 USFS and FWP deployed loggers

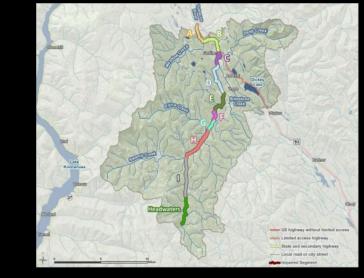
2012 Data

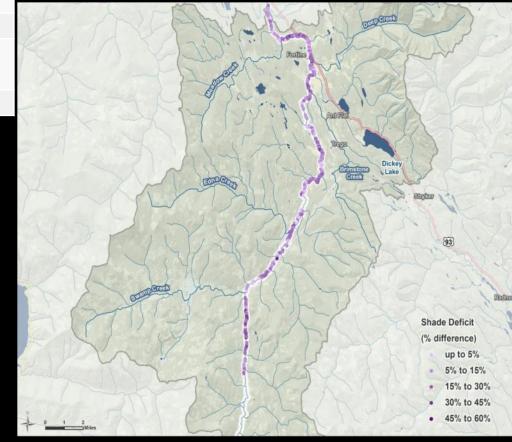

Vegetation Mapping

Aerial photo
 classification within a
 150 buffer of the
 stream into: trees,
 shrubs, herbaceous

Tree density
 categorized based on
 canopy from 2001
 NLCD

•Vegetation info used in combination with GIS data to estimate effective shade

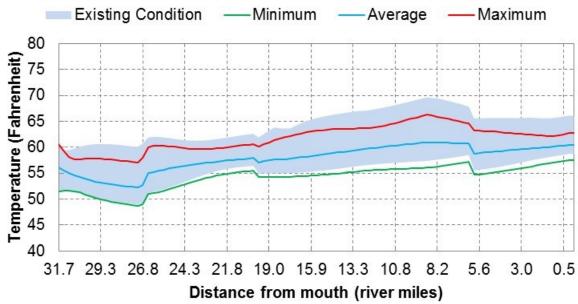

Temperature Standard & Model Framework


- The standard allows a human caused 0.5 or 1°F change from the naturally occurring temperature, and meeting this is the primary target
- Targets for shade, width/depth ratio, and water use
- QUAL2K used to model the existing temperature and 7 scenarios
 - Comparison between scenarios shows level of impairment and improvement needed

Scenario	Summary
1 - Existing Condition (baseline)	Based on current streamflow, climate, and shade conditions.
2 – No Withdrawals (sensitivity analysis)	Existing condition without water withdrawals.
3 - Maximum Shade (sensitivity analysis)	Existing condition with all vegetation communities within the 150 foot buffer along each side of the stream transformed to "high density trees" with the exception of roads, railroads, and areas dominated by hydrophytic shrubs.
4 – Improved Shade	Existing condition with all vegetation communities, with the exception of hydrophytic shrubs, roads, and railroads transformed to medium density trees within 50 feet of the stream banks. To simulate achievement of all reasonable land and soil conservation practices.
5 – Improved Water Management	Existing condition with withdrawals reduced by 15%. To simulate achievement of all reasonable water conservation practices.
6 – Naturally Occurring	Existing condition scenario with improved riparian vegetation in a 50-foot buffer and a 15 percent reduction of water withdrawals. This is to simulate full standards attainment via the use of all reasonable land, soil, and water conservation practices.
7 – Low Flow Existing Condition	Low flow existing condition scenario. To simulate stream temperatures on a drier year than the existing condition (Scenario 1).
8 – Low Flow Naturally Occurring	Existing condition scenario with improved riparian vegetation in a 50-foot buffer and a 15 percent reduction of water withdrawals. To simulate full standards attainment via the use of all reasonable land, soil, and water conservation practices relative to the low flow existing condition (Scenario 7).

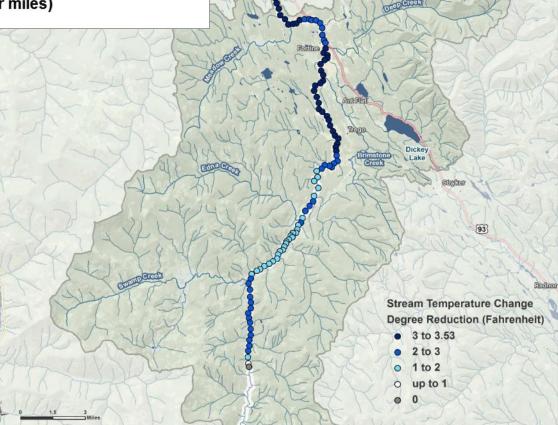
Comparison of effective shade between the existing condition and improved shade scenario

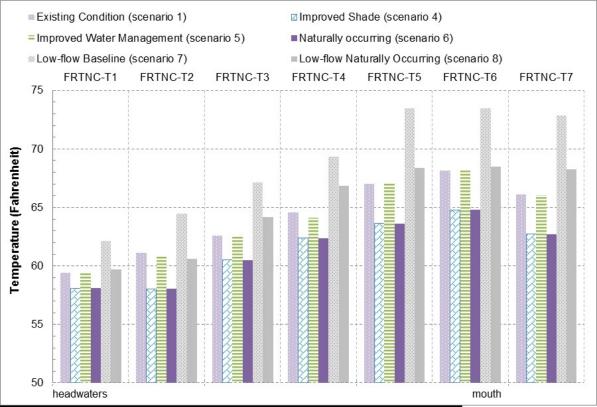
Model	Current	Improved Shade
Segment	Conditions	Scenario
1	82%	86%
Н	55%	62%
G	47%	61%
F	73%	74%
E	48%	60%
D	52%	61%
С	49%	63%
В	42%	60%
Α		
(mouth)	53%	63%
Average	56%	66%

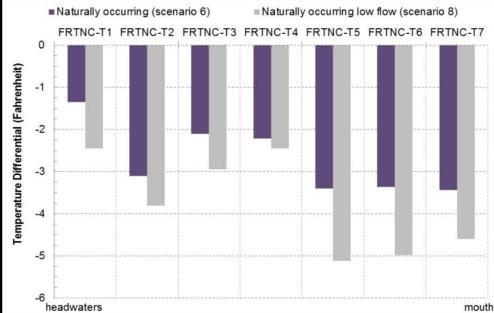


Scenario Results

Scenario	FRTNC-*							
Scenario	*T1	*T2	*T3	*T4	*T5	*T6	*T7	
Shade	-1.4	-2.7	-2.0	-1.7	-3.4	-3.4	-3.4	
Water Use	0	0	-0.001	-0.01	-0.02	-0.02	-0.04	
Naturally Occurring	-1.4	-2.8	-2.0	-1.7	-3.4	-3.4	-3.4	
Low flow Naturally Occurring	-2.5	-3.8	-2.9	-2.6	-5.1	-5.0	-4.6	


-Fortine Creek is much more sensitive to changes in shade than water use


-Under low flow conditions, effects of shade improvements are magnified


Naturally Occurring Scenario

- Naturally occurring temperatures range from 57.1°F to 66.3°F
- Allowable human-caused increase of 1.0°F
- Human sources causing an increase of 1.4 – 3.5°F (average = 2.6°F)

Summary of Results

Numeric and Surrogate TMDL

Source Type	Modeled Existing	TMDL/Load	Percent			
	Load (kcal/sec)	Allocation	Reduction			
		(kcal/sec)	Needed			
	24 702					
	31,792	29,555	7%			
influence temperature						
Source Type	Surrogate Allocation					
Land uses and practices that	• Improve to and r	naintain a 50 foot bu	uffer with			
reduce riparian health and shade	medium density trees or any vegetation providing					
provided by near-stream	equivalent effective shade					
vegetation along Fortine Creek.						
Land uses and practices that result	No increase in average width or width/depth ratios due					
in the overwidening of the stream	to human-caused	sources				
channel such that widths are	• Where bankfull width < 30ft, a width/depth ratio ≤ 21					
increased, depths are decreased,	• Where bankfull width > 30ft: a width/depth ratio \leq 35					
and thermal loading is accelerated						
Inefficient consumptive water use	Application of all	reasonable water co	onservation			
	practices					
Surrogate TMDL	• Application of al	l reasonable land, so	bil, and water			
	conservation pra	octices for human so	urces that could			
		temperatures. This				
		ffecting riparian sha				
	width, and instream flow.					

Implementation Strategy

- Nutrient and Temperature Goals
 - Continued use of BMPs where they already exist
 - Improve and restore riparian areas where current BMPs are insufficient
 - Improve land use management practices to reduce pollutant loading while still providing viable and sustainable economic growth

Adaptive Management

BMP = best management practice

Now That it's Done, What Does this Mean?

- A TMDL <u>does not</u> create or impose new regulations
- Implementation is voluntary for nonpoint sources

Next Steps

- If possible, integrate into the Watershed Restoration Plan being developed
 - Identify priorities
 - Refine source assessment
- Seek Funding to Implement Projects
 - Potential sources: 319, Future Fisheries
 Improvement Program, Watershed Planning and Assistance, EQIP

Questions?

Lisa Kusnierz Kusnierz.Lisa@epa.gov 406-457-5001

Public Comment Period

- July 16 August 12
- Document available: Eureka Public Library and DEQ website http://deq.mt.gov/pubcom.mcpx
- Submit comments in writing here, via mail, or electronically on DEQ website